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Abstract 

Radiation counting experiments are usually used to quantify activities of 

materials that are long-lived with respect to the count durations. Counts 

obtained include detections of background radiation. The usual statistical 

analysis (HPS 13.31) for estimating the activity and its uncertainty (mean and 

standard deviation) seriously overestimate the uncertainty when the activity and 

background are very low. Strom and McClellan [2001] reviewed this difficulty. 

We consider the case of short-lived nuclides for which the objective is to quantify 

the number of atoms, n, that were present in a sample when it was drawn, rather 

than the activity, which is changing during the measurement. Mathews and Gerts 

[2008] analyzed this case and developed formulas from which the probability 

distribution, P(n | counts, experiment parameters, background information), can 

be computed. They used this to develop experiment design processes that 

minimize the smallest detectable quantity of material, thus maximizing 

sensitivity for the detection problem. Here, their distribution is used to establish 

the mean quantity, <n>, and the equal-tails confidence interval (CI) for any 

specified confidence level, in order to determine the precision of the measurement, 

defined as the width of CI divided by the mean. An experiment quantifies n if the 
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precision is better than a specified precision tolerance. A quantity is quantifiable 

(by a specified experiment design) if the expectation that a measurement would 

quantify it exceeds a specified expectation tolerance. (These definitions are 

intended to be analogues of quantification limit for activity in the long-lived 

case.) Methods and software are developed for determining the minimum 

quantifiable quantity (MQQ) for a given experiment design, and for adjusting the 

count duration to achieve the lowest MQQ, hence maximizing the sensitivity for 

the quantification problem. Plots of MQQ vs. count duration support tradeoff 

decisions. Monte Carlo methods have been used to validate this analysis and 

experiment design software.
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DISCRETE COUNTING OF SHORT LIVED ISOTOPES WITH LOW 

BACKGROUND DETECTORS 

 

1. Introduction 

We consider the problem of low-level radiation counting with very low 

backgrounds. The objective is to develop statistical analyses and experiment 

design methodologies that maximize sensitivity of such experiments. Mathews 

and Gerts (2008) treat the detection problem: detecting the presence of any 

quantity of a nuclide that is short-lived compared to the count duration. Their 

derivation of the various conditional probabilities that are needed here is 

reviewed in sections 2.1 through 2.4 so that this document may stand alone. 

They developed experiment design methods that provide the count duration (for 

an otherwise fully-specified counting measurement) that maximizes sensitivity 

and the critical number of counts needed to declare detection at a specified 

confidence level. Here, we extend their work to treat the quantification problem 

and develop experiment design software that finds the count duration that 

minimizes the quantity required to ensure a sufficiently precise measurement or 
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that provides a tradeoff curve of minimum quantifiable quantity vs. count 

duration for an otherwise fully-specified counting measurement.  

1.1 Motivation 

 Accurate measurement of small quantities of radioisotopes is a necessity 

for several Department of Defense applications.  As progress is made in 

developing detectors capable of counting decays while registering very little 

background, the minimum radioisotope population required to quantify the 

measurement within a reasonable window of uncertainty has decreased.  

However, contemporary analysis methods rely on normal distributions for 

analyzing these measurements, and have limited sensitivity in situations where 

the total number of counts does not meet the Gaussian assumptions (Mathews, 

2007).  Contemporary methods also fail to apply when the duration of the 

measurement is on the order of magnitude or greater than the half life of the 

isotope being measured (Knoll, 2004).  Under these conditions, it is possible that 

the Gaussian assumptions will result in reporting unphysical negative sample 

sizes.  Preliminary indications from this work suggest that these restrictions 

decrease detector sensitivity by an order of magnitude.  In order to best use low 

background detectors on short lived isotopes, modern data analysis and 

acquisition methodology must incorporate exact statistics rather than Gaussian 

assumptions. 
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1.2 Theory 

The standard methodology and analysis for the measurement of a 

radioactive source was first introduced by Lloyd Currie in 1968.  Prior to his 

paper, there was enough inconsistency in the definition of “detection limit” to 

cause a large amount of disagreement amongst scientists.  Currie described an 

analysis method assuming that radioactive decay and background were governed 

by Poisson counting statistics with normally-distributed error.  The method 

involved pairing sample measurements with a “blank” background measurement 

and subtracting out the background. 

The method of pairing blank and sample measurements is still in practice 

today.  Under normal circumstances, the radioisotope being measured is of 

significant enough quantity and the measurement time short enough compared to 

the half life of the isotope that the activity can be assumed to be constant and 

the expected foreground distribution to be an adequate approximation to the 

normal (Gaussian) distribution.  For example, the analysis presented in the 

American National Standards Institute standard in conjunction with the Health 

Physics Society, HPS 13.30 (Heid 1996) assumes a Gaussian estimate to both the 

foreground and background distribution by pairing a sample count with a blank 

count and subtracting the blank.  Given this method, it is possible for zero or 

even negative counts to satisfy the decision criterion when a small number of 

atoms exist in the sample.  This result is unrealistic because it is impossible to 
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have a sample containing a negative number of isotopes.  The ANSI method also 

does not sufficiently account for uncertainty in the measurement of the mean 

background count rate in the case of very low background.  This is because a 

single short measurement in low background results in a broad, normal 

distribution of the count rate. 

Recently, this standard has been challenged in the case of low level 

counting situations (Strom and MacLellan, 2001) in favor of Poisson distributed 

foreground and background.  This reduces the possibility of achieving negative 

counts, but it maintains the assumption that the counting time is at least an 

order of magnitude less than the half life of the isotope being measured.  To 

remove this restriction, this paper demonstrates the use of the binomial 

distribution to construct the likelihood function for the foreground counts. 

The background count is also a source of uncertainty.  Although the 

Poisson distribution may be assumed, the mean count rate will be estimated 

based on a single or series of discrete background counts and is thus subject to its 

own variation that must be addressed.  The Poisson distribution is the 

probability of registering b counts given a known mean background rate.  These 

conditional probabilities may be reversed by applying Bayes’ Rule (Black and 

Thompson, 2001).  In this manner a function for the actual background rate can 

be generated by taking a measurement of the background. 
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1.3 Classic Experiment Design 

Consider a sample of a short lived radioisotope with an initial unknown 

quantity of n atoms and a known decay constant λ obtained at time t0.  A delay 

td occurs between the collection and the start of measurement. The measurement 

begins at time t1 and ends at time t2 for a total measurement time of tc.  The 

detector records c total counts that contain an unknown number of k foreground 

and b background counts.  The mean background counts μ in tc is inferred from a 

background measurement of duration tB containing B counts. 

The number of counts will give rise to a probability distribution function 

for n.  A confidence interval will be constructed on the cumulative density 

function for n, as shown in Figure 1. 

 
Figure 1 - Two PDFs and CDFs with 80% confidence intervals and medians 
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A measurement will be considered quantified if the distribution satisfies 

narrowness requirements as defined by the relative width: the ratio of the width 

of the confidence interval with the expectation value for n.  This is a departure 

from the practice presented in HPS 13.30 which simply builds a confidence 

interval from Gaussian assumptions.  For any experimental scenario, there is a 

lowest value for n that can be expected to be quantified in a desirable fraction of 

attempts.  This value is the Minimum Quantifiable Quantity or MQQ.  Altering 

the conditions of the experiment will affect the MQQ.  The lowest possible value 

of the MQQ under conditions optimized for sensitivity is the Lowest Minimum 

Quantifiable Quantity, or LMQQ. 

1.4 Statement of the Problem 

 In this thesis, I describe a method for the analysis of experimental results 

to construct a probability distribution function for n and a confidence interval to 

describe the narrowness of the function.  I also describe a method for calculating 

the expectation of quantification given n and the known experimental conditions.  

Furthermore, I describe software that uses these methods to find the MQQ and 

calculate it as a function of the count duration.  This data is used to find the 

LMQQ as well as to describe tradeoff choices in experiment design.  Finally, I 

describe software used to simulate the experiment as well as verify and analyze 
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the discrete method.  This method is general and can be applied to any short-

lived radioactive isotope. 

1.5 Scope 

This research investigated the application and performance of an 

experiment optimization method using discrete statistics.  The method is 

explored for strengths and weaknesses and is compared to the ANSI standard 

HPS 13-30. 

1.6 Assumptions and Limitations 

The computational method described assumes that the only sources of 

counts include the sample material, where the number of atoms that decay is 

governed by the Binomial distribution with each atom being treated as a 

Bernoulli trial, and a constant-mean Poisson distributed background.  These two 

sources are statistically independent because there is no causal relationship 

between the two sources, and the mean count rate is assumed to be so low that 

dead time is negligible in the detector.  This project is limited to the calculation 

and modeling of the counts registered from a small quantity of a short lived 

radioisotope being measured in a low background detector. 
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1.7 Approach 

This thesis demonstrates the mathematical basis for the statistical analysis 

of the problem in section 1.3.  This methodology is programmed into a numerical 

method using the FORTRAN language.  This method is used both to analyze 

data from experiments and to evaluate and optimize experiment design for 

maximum sensitivity.  The code is verified with a separate verification tool.  This 

tool is then used to explore the discrete method by simulating the experiment in 

a range of scenarios designed to test the failure modes of the application.  These 

data are used to describe a technique for setting up an experiment and analyzing 

data from a low background detector and to compare its efficiency and accuracy 

to current classical methods. 
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2. Governing Equations and Statistical Relations 

Accounting for each source of measurement event is crucial to effectively 

modeling the discrete nature of recorded counts in a small sample and low 

background scenario.  In this investigation, only the foreground measurement of 

actual decays, and background from random events unrelated to the experiment 

are included.  Given the very low number of counts expected in the experiment, 

it is also reasonable to assume that any dead time in the detector will have a 

negligible impact on the outcome.  Thus, dead time can be ignored, allowing the 

foreground and background counts to be treated as statistically independent and 

the inputs used to model those events to be treated independently. 

The following derivation of a pdf for n given the experimental data is 

paraphrased from Mathews (2007). 

2.1 Binomial Distributed Foreground 

 The probability of collecting foreground counts is the product of the 

probability that an atom will decay during measurement and the likelihood that 

the detector will actually register that decay.  The probability that an atom of a 

given species will decay is given by equation (1) 

 ( ) 1 t
decayp t e λ−= − , (1) 
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where λ is the species’ decay constant and t is the amount of time given for 

decay.  To account for a delay between the collection or generation of the sample 

and the start of measurement, the probability that an atom will decay during the 

counting must include not just the probability that it will decay during the 

measurement time, but also the probability that it will not decay during the 

delay: 

 . (2) ( , ) (1 )dt
decay d cp t t e eλ− −= − ctλ

The probability that a foreground count will actually be registered is the 

product of the probability of decay and the efficiency of the detector.  The 

efficiency, ε, of a detector is the fraction of decays in the sample that are 

detected and can be greatly affected by the geometry and scale of the detector as 

well as being influenced by environmental factors such as temperature.  For the 

purposes of this investigation, efficiency will be fixed and is assumed to be known 

with sufficient precision to neglect uncertainty, setting the probability of 

detection at 

 . (3) detect decayp p ε=

 Because each decay and background count are considered separate and 

independent, whether an atom decays and is counted can be treated as a 

Bernoulli trial and the number of counts k registered from n atoms is governed 

by the binomial distribution 
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 . (4) ( | , ) (1 )k
detect detect detect

n
P k n p p p

k
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

n k

 This formula is ideal for analysis of small samples because the probability 

distribution is restricted to foreground decays with a value of zero to n, whereas 

the Poisson approximation is biased high in the case of low values for n and the 

Gaussian approximation allows for unrealistic possibilities for negative sample 

size, especially given long counting times. 

2.2 Poisson Distributed Background 

Background counts are defined as rare random events unrelated to the 

sample that cause counts in the detector.  It is impossible to completely eliminate 

the background; however methods such as measurements in highly-shielded clean 

rooms and coincidence counting have succeeded in significantly decreasing 

background.  Background is also assumed to be purely random and not driven by 

constant sources elsewhere in the laboratory.  Given these assumptions, 

background counts can be characterized by the Poisson process.  The distribution 

of the number of background counts b measured in a set time window with an 

expectation value μ is given by 

 ( | )
!

beP b
b

μμμ
−

= . (5) 

 Because μ cannot be known, it must be measured experimentally.  To do 

that, a background measurement must be run separate from the sample 
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measurement.  In order to gain as much information as possible about μ, it is 

preferable to make the background measurement much longer than the sample 

measurement.  In reality, a background count may be affected by the time of 

day, time of year, and various activities such as other experiments in the vicinity 

of the detector.  For the sake of simplicity, the mean background rate is treated 

as stable.  Given a stable mean background rate, the preferred blank 

measurement time is long compared to the sample measurement.  Increasing the 

blank measurement time increases the amount of information the researcher has 

regarding the mean background count rate.  This narrows the distribution of 

probable values of μ. 

 The functional variation of μ is calculated from the background data.  The 

value a is defined to be the ratio between the foreground and background 

measurement times, where 

 c

B

ta
t

= . (6) 

Uncertainty in a can be neglected by assuming that the count times are precisely 

known.  Because the background is governed by the Poisson process, the 

expected mean counts in the sample and background counts are related by the 

same time ratio 

 / aμ μ= , (7) 
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where μ  is the expectation value for the background count.  The probability 

density function governing μ , given a and the number of background counts B, 

is transformed to μ  by 

 ( | , ) ( | , )f a B d f a B dμ μ μ μ= , (8) 

where 

 1d
d a

μ
μ

= . (9) 

The Poisson distribution only describes the probability of B counts given the 

expectation value, not the other way around.  Bayes’ Theorem can be used to 

swap the conditional probabilities. 

 

0

( ) ( | )
( | )

( ) ( | ') '

prior

prior

P B P B
f B

P B P B d

μ
μ

μ μ
∞=

∫
 (10) 

In order to avoid bias in the calculation, the Pprior(B) distribution is defined to be 

flat and uninformative (Mathews, 2007).  This means that the constant 

probabilities for the background priors cancel.  The integral of the function 

remaining in the denominator from zero to infinity equals 1, yielding the equation 

for μ : 

 ( | , )
!

Bef a B
B

μμμ
−

= . (11) 

Transforming μ  to μ, by using equation (7) yields the conditional probability 

density function for μ: 
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 1

1( | , )
! !

a
B B a

a
B

e ef a B
a B a B

μ μ
μ μμ

−−

+= = . (12) 

 The probability distribution function for recording b background counts 

during the sample measurement given background data a and B is the product of 

the probability of b counts given expectation value μ and the functional 

distribution of μ given the background data integrated over all possible values of 

μ: 

 
1

0

1( | , ) ( | ) ( | , )
1 1

b B B baP b a B P b f a B d
ba a

μ μ μ
+∞ +⎛ ⎞⎛ ⎞ ⎛ ⎞= = ⎜⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ⎟

−

. (13) 

 This distribution, based on Poisson statistics, is discrete while allowing for 

a real mean count rate with uncertainty depending on how much information has 

been gathered on the background.  Furthermore, it has no negative tails that 

would be included in a normal approximation to the background. 

2.3 Total Counts 

The analysis thus far is capable of calculating the probability of recording 

c counts given n atoms.  All other experimental constants such as detector 

efficiency or delay time will be treated as implicit unless explicitly required by 

the analysis.  Thus, the probability of recording c counts given n is  

 . (14) det
0

( | ) ( | , ) ( | , )
c

ect
k

P c n P k n p P b c k a B
=

= =∑
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However, the purpose of the experiment is to calculate a distribution function for 

the number of atoms in the sample at t=0 given that c counts have been 

measured.  Again, by using Bayes’ Theorem and an uninformative prior 

regarding the distribution of n, the conditional probabilities for  can be 

swapped.  Holding all other variables constant, the probability of having n atoms 

given c counts is given by 

( | )P c n

 

' 0

( | )( | )
( | ')

n

P c nP n c
P c n

∞

=

=
∑

. (15) 

 The sum in the denominator cannot be carried out to infinity, however, it 

can be carried to sufficiently high values for n’ that the value of the sum will fall 

within a reasonable tolerance of the true answer.  

2.4 Acceptable Uncertainty 

In order to successfully declare a measurement as quantified, the 

researcher must construct a confidence interval over the pdf for n with a 

confidence level 1-αc, where αc is defined by the researcher.  It is possible to 

construct confidence bounds in place of intervals should a lower or upper limit be 

desired, but this research is limited to intervals.  This confidence interval can be 

constructed such that it is symmetric about the point estimator in n or that it 

has equal probability tails.  In this case, the equal probability tails is preferred 
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because it is possible to construct a symmetric confidence interval that contains 

negative numbers. 

The width of this confidence interval must be compared to a point 

estimator that is chosen between the mean, the median and the mode.  In this 

case, the mode is rejected because the distributions are not always symmetric.  

The median is the preferred point estimator because it can be calculated at the 

same time as the equal tailed probability distribution and, because the 

distributions are well behaved, is very similar to the mean.  However, in this 

research the mean is the point estimator used because at the time of its initial 

coding, it worked well in the construction of the program regardless of its 

computational cost.  It is calculated using a trimmed mean where computation is 

ceased when a satisfactory fraction of the distribution function is covered. 

Quantification can be declared once the ratio of the width of the 

confidence interval to the value of the point estimator is less than θ, a value 

defined by the researcher.  In order for an initial number of atoms to be 

quantifiable, then there must be an expectation that quantification will be 

declared 1-αq of trials, where αq is defined by the researcher. 

2.5 Optimizing Δtc for Greatest Sensitivity 

For each experiment, there exists a value for n that is the Minimum 

Quantifiable Quantity.  Optimizing for greatest sensitivity is then a matter of 

adjusting parameters such that the defined confidence levels are met exactly or 
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exceeded for the lowest possible MQQ  The value for n that corresponds to the 

MQQ at maximum sensitivity is the Lowest Minimum Quantifiable Quantity 

(LMQQ). 

 While factors such as the efficiency of the detector and the mean 

background level are important, the only parameter that the experimenter can 

reasonably change is the count duration.  The quality of the results of a low 

count experiment changes as the time window changes.  This is because time has 

differing impacts on the number of foreground and background counts as 

expressed in equation (14).  The contribution by the foreground from an increase 

in count duration in the first few half lives is great because the probability of an 

atom decaying increases rapidly during that time.  However, the marginal utility 

of additional counting time decreases as the atoms in the sample decay away.  In 

contrast, the background rate stays constant in time and the contribution of the 

background to the total counts will continue to increase linearly with time.  This 

means that for each value of n, there is an optimal measurement time.  
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3. Computer Code Implementation 

 The primary function of the experiment design code is to optimize the 

detection sensitivity for the Lowest Minimum Quantifiable Quantity and to 

calculate the ideal time of measurement given the defined experimental 

constraints.  It also contains a function intended for data analysis that outputs a 

probability distribution function for values of n given experimental data from a 

measurement.  Finally, it is designed to output the minimum quantifiable 

quantity as a function of the conditions of the experiment. 

3.1 Implementation of Discrete Statistics 

The implementation of discrete statistics can be straightforward or 

problematic depending on which of the calculations the code is executing.  The 

data analysis routine is a simple calculation to determine a probability 

distribution function for n given c and the other known data.  This analysis 

benefits greatly from the discrete nature of the exact statistics by not being 

restricted to the assumptions made by a Gaussian calculation.  The second 

calculation, finding the LMQQ and optimizing the counting time, is made much 

more complicated by the implementation of discrete statistics.  These statistics 

introduce discontinuities in the results of the calculation brought on by the 

integer nature of the non-continuous functions. 
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 In this investigation, the primary source of discontinuity comes from the 

method used to define a confidence interval for the purposes of calculating the 

Probability of Quantification (PoQ) of the measured data.  The PoQ is a value 

determined from a known n and calculated over all c in the equation: 

 , (16) 
0

( ) ( | ) ( )
Quantify

c
P n P c n q c

∞

=

=∑

where 

 . (17) 
1

( )
0

c quantification
q c

else
⇒⎧

= ⎨
⎩

Calculating the probability of quantification for the MQQ may appear to 

be the simplest method when attempting to determine optimal measurement time 

for a high sensitivity count.  However, because the function is not continuous 

both in time and counts¸ it becomes broad, jumpy, and is difficult to maximize in 

conditions at or near the LMQQ due to the combined fact that the PoQ always 

has a positive slope with respect to counting time (with exception to the location 

of the jumps) and that the location of the jumps is dependant on the method 

used to define the confidence interval.  The code avoids these difficulties by 

interpolating between values of n’ on its probability density function and 

measuring the relative width of the confidence interval in terms of real numbers. 

 Figure 1 shows the probability of quantifying a measurement given known 

information about the experiment based on a known initial quantity of atoms.  

Each of the family of “lines” displayed corresponds to the probability of 
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achieving at least a minimum number of counts that will be quantified in the 

time given.  Depending on the method of interpolation, counts above this 

minimum are nearly always quantified.  All of these lines increase and decrease in 

probability.  It is possible for these lines to stay at or near 1 for a significant 

number of half lives before their probability of being accepted drops off.  A more 

detailed discussion of this can be found in Chapter 4. 

 

 

Figure 2 - Probability of Quantification at LMQQ1 

ε αc = .2

αw = .2

θ = .2 = 1 

td = 0 

tB = 20

B = 1
 

                                                 

1 All data presented in Chapter 3 are calculated using the same experimental variables. 
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3.2 Implementation of Non-Discrete Measure of Confidence 

In order to alleviate the problems introduced by the development of 

confidence intervals on the discrete probability distribution function for , 

the code interpolates to determine a pseudo-interval that is continuous in n’.  

The expectation value of a pdf is a real number, and once an interpolation 

method is used, the width of the confidence interval itself is also a real number.  

The ratio of the two is the relative width wr of the interval where  

( | )P n c

 ( )
( | )

hi low
r

CI CIw c
P n c

−= . (18) 

Because any calculated width varies as a function of c, it can be treated in the 

same way as the probability of acceptance, yielding the Expected Relative Width 

(ERW); 

  (19) 
0

( , ) ( | ) ( )r
c

ERW n data P c n w c
∞

=

=∑

 which is a function of n and requiring the other data from the experiment, but having the 

advantage of being much better behaved than its discrete counterpart, thanks to the fact 

that it experiences no discontinuities. 
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Figure 3 - Expected Relative Width at LMQQ 

 

 The interpolation method used to define the confidence interval must be 

chosen with some care.  The cumulative density function is a monotonic, non-

decreasing function, and any data calculated by an interpolation scheme should 

reflect that.  The goal in selecting an interpolation method is to yield a 

continuous function for w(n’|c,tc) that is also continuous in the first derivative 

with one local minimum to promote ease in minimizing it.  Without 

interpolation, any function for relative width will be discontinuous.  Linear 

interpolation yields a function for the expected relative width that is continuous, 

but not in the first derivative, presenting a minimization problem with multiple 

local minima and an increased degree of uncertainty in the final result.  Cubic 
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spline interpolation is continuous in both the first and second derivative but risks 

losing the monotonic nature of the cumulative distribution function.  However, 

an algorithm presented by Fritsch and Carlson (1980) successfully uses the cubic 

basis functions in a monotone piecewise interpolation that is continuous in the 

first derivative and generates a function for the expected relative width that 

contains only one local minimum.  This is the default method that is used by the 

program. 

To interpolate using the monotone piecewise method, the algorithm first 

inputs the two points of interest and their adjacent outside points.  It defines the 

two variables α and β as the ratios of the endpoint derivatives to the slope of the 

secant line, Δk.  Fritsch and Carlson determined the region of monotonicity to be 

the shaded region in Figure 4. 

 
Figure 4 - The monotonicity region from Fritsch and Carlson. 

If α and β fall outside the monotone region, then a correction value τ is defined 

for each point,  
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12 2 23( )k k kτ α β −= + , (20) 

and their derivatives are adjusted accordingly: 

 . (21) k k km τ α= Δk

.It does not yield a perfectly well behaved function, which would preferably be 

continuous in each derivative, but the results are the most stable of the methods described 

above. 

 Figures 5 and 6 illustrate the effects that the different interpolations methods have 

on the probability of quantification and expected relative width given the same 

experimental data.  In nearly all situations, the PoQ is higher with a narrower ERW.  

Figure 5 also demonstrates the desirability of the cubic monotone interpolation over the 

linear interpolation when it comes to searching for an absolute minimum for the ERW. 

 

Figure 5 - Effect of interpolation on Probability of Quantification 
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Figure 6 - Effect of Interpolation on Expected Relative Width 

 

Figure 7 - Effect of interpolation on ERW near lower bound 
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3.3 Algorithm of the LMQQ Code 

 This Experiment Design Code is designed to run on a set of default 

parameters for decision criteria and interpolation, but also allows the user to 

stipulate specific methods.  The algorithms for the three primary functions differ 

slightly from one another.  The experiment optimization code reads in a user 

generated input file.  In order to avoid calculating individual choose results for 

binomial foreground probabilities, the code initializes a 1000 by 1000 array of 

choose results based on the following relation: 

 1
1

n n n k
k k k

⎛ ⎞ ⎛ ⎞ − +⎟ ⎟⎜ ⎜⎟ ⎟=⎜ ⎜⎟ ⎟⎜ ⎜ −⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
. (22) 

The code then enters a loop to determine the LMQQ.  It begins by taking steps 

in time by half lives starting with 1.  For each step it initializes the probability 

functions for foreground and background detection.  It then calculates the 

Expected Relative Widths with respect to n starting from n=1 until it finds a 

corresponding ERW that is less than or equal to θ.  Each time step yields a 

different value for n.  Once the lowest n is determined, the code uses the 

bisection method in time to find the optimal counting time for that value of n.  It 

then calculates the Probability of Acceptance given n and tc.  If the PoQ is 

greater than 1-αa then it checks the ERW and PoQ at optimal time for n-1, 

otherwise, it begins increasing n until a satisfactory PoQ is achieved. 
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 The other two routines are based on functionality already built into the 

optimization code.  The Minimum Quantifiable Quantity function works just like 

the optimization function except that time is no longer variable.  The data 

analysis routine uses the formulas presented in Chapter 2.  The code inputs the 

experimentally known variables and outputs a probability distribution function 

for n, as well as whether or not the function is sufficient to declare a 

measurement.  These routines are the source of data for the experiment 

simulation and verification routine. 

3.4 Generation of Binomial and Poisson Distributed Random Data 

To test this program it is useful to be able to generate realistic data from 

known experimental conditions to input into the analysis code.  The number of 

counts during sample measurement that can be attributed to foreground must 

follow a binomial distribution.  The data for the background count and the 

background counts registered during sample measurement must follow a Poisson 

distribution.  These numbers can then be fed into the Experiment Design Code 

for analysis. 

The function that generates random binomial data inputs the number of 

atoms, n that are in the sample, the delay time td, and the measurement time tc.  

All times in this calculation are measured in half lives of the species being 

measured.  For each atom in the sample, a random number between zero and one 

R is sampled from a uniform distribution by the standard random number 
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generator for the Intel FORTRAN compiler for Microsoft Visual Studio.  The 

time that each atom decays Di is then equal to 

 ln(1 )
ln(2)

i
i

RD − −= . (23) 

If Di is greater the delay time and less than the sum of the delay and 

measurement time then the quantity of foreground counts is incremented by one. 

The background count generation function comes from Donald Knuth’s 

Seminumerical Algorithms, 1969.  It inputs the mean background count rate μ, 

and the measurement time tc.  A target number L is defined as 

 . (24) tL e μ−=

A counting variable p is set to 1.  The function then enters a loop.  It generates a 

random number R, and redefines p as 

 . (25) *p p R=

If p is greater than L, then the number of background counts is incremented by 

one and the loop continues, otherwise the total background count is reported. 

All data for testing can be rapidly and repeatedly generated in this 

fashion.  The simulation package is then capable of generating scores of sets of 

realistic data, while being able to judge the results from the EDC against the 

known sample size and background count rate.
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4. Testing and Verification 

 True validation is extremely difficult given current experimental 

capabilities because it is not only difficult to generate a sample that contains 

precisely n atoms, but also to do so for a range of species under multiple 

experimental conditions.  However, the analysis algorithms may be verified using 

existing mathematics software coupled with a very simple random data 

generation simulation.  The simulation is given n, μ and the experimental data 

provided to the Experiment Design Code in order to produce data for the EDC 

to analyze and determine its effectiveness.  This code was used both to verify 

expected error rates given the inputs provided by the user, as well as to compare 

the performance of the discrete method against the HPS 13.30 standard.  The 

verification method presented here demonstrates a ground up capability based 

approach that begins by verifying individual subroutines in the Experiment 

Design Code, followed by a systems level investigation intended to measure the 

overall performance of the capabilities described in Chapter 3. 

4.1 Piecewise Subroutine Verification 

 Most subroutine verification was accomplished using Microsoft Excel, 

SigmaPlot or Mathematica.  The initialization of the choose array was output to 

a file and compared against the choose function in Mathematica and agreed to a 

minimum of 10 digits of precision.  The probability distributions for detection 
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and background counts are also compared to Mathematica calculations with 

similar results.  The monotone cubic interpolation function is compared against a 

range of monotone increasing functions.  The output values of function agree 

with the array values provided, and the points between maintain a visually 

pleasing and monotone increasing trend, as shown in Figure 6. 

 

Figure 8 - Verification of Monotone Cubic Interpolation 

4.2 Verification of the Experiment Simulator 

 Systems level verification of the Experiment Design Code requires that the 

simulation program create foreground and background data that are binomial 

and Poisson distributed respectively.  In order to do this, data sets of 1000 

random points were generated under fixed conditions.  Those points are then 

gathered into a histogram and compared to the expected values as described by 
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the probability density function for the distribution under those circumstances.  

The statistics package associated with the Sigma Plot (v9.0) scientific graphing 

software is then used to perform a paired t-test to determine goodness of fit.  The 

paired t-test was chosen because it was the only paired data test available in a 

standard installation of this software.  For each test, the t value is below 1*10-3 

with orders of magnitude reaching below 10-6 in areas where the distributions are 

narrow.  The corresponding P values are reported from .998 to 1.  Figure 9 

demonstrates a handful of the data sets generated as part of this analysis. 

 

Figure 9 - Verification of Poisson and Binomial data generation 
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4.3 Confidence Interval Generation 

 The confidence interval generation routine requires, by its nature, three 

separate methods of verification.  This is because the confidence interval itself 

has real boundaries that were interpolated between points on a discrete 

probability density function.  The first two tests are related in that they both 

involve discrete measurements.   The first is a simple check to determine if the 

sum of the probabilities inside the confidence interval is less than or equal to 1-α.  

The second checked that the sum of those same points with the two bordering 

points outside the confidence interval is greater than 1-α.  These tests are 

intended to ensure that the interpolation routine is being called for the correct 

locations in the pdf. 

 The data for both tests are generated by the experiment simulation using 

random counts for the sample and background measurements and a range of 

confidence levels.  The total failure rate of the first discrete test is about 25.3%.  

That value is relatively insensitive to confidence level, rising to 28.8% at α=0.3 

and decreasing to 21.2% at α=.01.  The failure rate of the second test is 0% in all 

cases.  These levels of failure are almost always to be expected given the 

conservative manner in which the confidence intervals are being defined.  

Constructing the confidence interval using the cumulative distribution function 

allows for the possibility that the confidence bounds will be located between 

points that constitute a large jump in the probability distribution function.  
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Figure 10 demonstrates the confidence interval constructed on a sample function 

of n that fails the first test.  The calculated confidence bounds are approximately 

35.6 and 40.3.  The sum of the probabilities between these bounds is 

approximately 80.1, a number that fails the first 1-α test. 

 
Figure 10 - Confidence interval location in P(n) that fails the 1-α test. 

 

 A twenty-five percent rate of error may seem alarming, but given where it 

occurs, it can easily be ignored.  Errors tend to occur in situations of relatively 

extreme high and low values for n where quantification is not in question.  Also, 

the fact that the second test always pass demonstrates that the confidence 

intervals err on the side of conservatism. 

 33



The third verification method for the confidence interval is intended to 

ensure that the original value for n actually falls within the confidence interval at 

a rate at or above 1-α.  This has to be done with care because the experimental 

method and the outcome of the pdf calculation for n are sensitive to the 

background method.  Therefore, several tests are presented which treat the 

background input differently.  They include a Poisson distributed variable b, 

background counts that are fixed at the most probable level given the mean 

count rate, as well as b counts that were fixed with a high and low bias.  As 

expected, the unbiased test shows a higher than average success rate than the 

other three tests.  Its success rate is also within a percentage point of 1- α.  The 

box and whisker plots in Figure 11 show the variation of the results seen in this 

test.  Each data point used to construct this plot is an average of 100 trials.  

Each of the box and whiskers themselves are calculated from 100 such points.  In 

the plot, it appears the confidence intervals are too narrow.  It is possible that a 

margin of 1 or 2 should be added to the calculated LMQQ to account for failures 

of the confidence interval to contain n at LMQQ. 
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Figure 11 - Verification of confidence interval success, MQQ = 19 

There is a noticeable downward trend in the fixed background scenarios.  

Performing these same tests in detail for much higher values of n was avoided in 

the interest of computer time.  However, a limited extension of n to 100 was 

performed for a tenth of the trials with a fixed high probability background 

count.  This test indicated that the jumps in the data continue with local 

negative slope, but an overall positive trend similar to that shown in the plot 

with variable background. 
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It should be noted that the results of each fixed background test exceed 

confidence requirements at the value of n for which the Experiment Design Code 

optimized the counting time (the counting time during the variable background 

test is fixed, thus introducing additional error and lowering the values for that 

plot).  This is encouraging because it suggests that the basic experimental 

method is sound.  However, bands of insensitivity where n is higher than the 

LMQQ are not acceptable.  This can occur in the regions in Figure 11 where the 

quantification distributions fall below 1-αc. 

4.4 User Input Requirements vs. Simulated Outcomes 

 Given that the individual building blocks are sound, it is possible to 

perform a series of systems level tests on the experiment design code.  These tests 

are intended to verify three functions.  First, the code should successfully 

quantify the data of a fraction of trials equal to or greater than 1-αq.  The 

confidence intervals should also contain the test quantity of atoms with a rate 

equal to or greater than 1-αq.  Finally, the LMQQ reported by the EDC should 

be the actual LMQQ at the proper time reported. 

The first two requirements may be verified simultaneously.  As the 

experiment simulation feeds the analysis routine randomly generated counts, the 

fraction of trials that produced confidence intervals that were too wide to be 

quantified was tallied.  At the same time, the boundaries of the confidence 

intervals of accepted trials were recorded and compared to the sample size to 
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determine how often those intervals did not include n.  After over a quarter of a 

million trials over a range of quantification probabilities and sample sizes, the 

fraction of quantified samples is never less than 1-αq, provided that the sample 

contains at least the minimum quantifiable quantity.  Quantification levels rise 

quickly to 100% as n increases.   

The tests to quantify error are run with 10,000 sample batches.  For each 

sample, if a confidence interval is accepted, then the high and low boundaries are 

recorded.  The histograms displayed in Figures 11 and 12 show how these data 

sets are distributed.  The sample size in these figures is abnormally high 

compared to the LMQQ of 19 in order to eliminate the impact of non acceptance 

to the magnitude of the data in the graphs.  However, the proportions of the 

data distributions are very insensitive to sample size.  In each test case, the 

empirical coverage corresponds closely with the calculated theoretical coverage. 
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Figure 12 - Confidence interval boundary estimates; B is fixed 

 

Figure 13 - Confidence interval boundary estimates; B is variable 
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Error in these tests occurs where the lower boundary is above the sample 

size of 55 atoms or the upper boundary is below it.  In all cases the error is 

within 2 percentile points of αc.  It is important to note that a bias in the 

background measurement did not significantly increase the acceptance error.  

However, it did bias the expectation value by as much as 8% of n  by using bias 

limits that covered 80% of the possible values of B. 

This same experimental scenario is also tested to determine the LMQQ.  

The first test is a simple check to determine the number of trials that declare a 

valid confidence interval given n and tc.  The value of n is increased through the 

predicted LMQQ.  The expectation is that the first value of n that demonstrates 

an acceptable success rate would be the LMQQ and all subsequent values of n 

would succeed at the same rate or higher.  The first chart in Figure 14 

contradicts that expectation.  The success rate does increase to 1-α, but does not 

reach the desired level until n = 20, instead of the desired LMQQ of 19.  That, 

by itself is acceptable, but greater values of n actually decrease the success rate 

in 10,000 tests.  Extended testing with higher values for n demonstrated a 

tendency similar to the one shown in Figure 11.  Success rates fluctuate around 

1-α with a general increasing trend.  This is possibly due to sample populations 

that are likely to produce measurement counts that will force the errors in 

confidence interval generation discussed above.  
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Figure 14 - LMQQ Verification for n and tc 

 

 Figure 14 also demonstrates where errors generated by the confidence 

interval generation subroutine manifest themselves in time.  The three charts 

measured in time all display discontinuities in the success rate.  It should be 

noted that the data sets presented are calculated with no bias in the background 

measurement; however biased measurements return similar results with 

discontinuities in separate locations.  Variable background measurements yield 

smoother results with slightly more error and variation in the outcomes. 
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4.5 Design Code vs. HPS 13.30 

 The American National Standards Institute and the Health Physics 

Society have maintained an analysis method since 1996 that is based on Gaussian 

error analysis of the measurements.  Its standard of measurement is also in terms 

of mass or activity instead of number.  Equation (26) shows the formula to 

determine the activity in the sample. 

 /
c B

c BA
t t

K
⎡ ⎤
⎢ ⎥= −⎢ ⎥⎣ ⎦

 (26) 

K is a calibration constant that takes efficiency and process losses into account.  

In order to account for the appreciable decrease in quantity of a short lived 

nucleus during measurement time, HPS13-30 translates the actual counting time 

to an “effective counting interval” in the activity calculation: 

 . (27) (1 )/d ct t
Gt e eλ λ λ− −= −

 A confidence interval in count rates is determined by estimating the 

deviation of the Gaussian distribution by taking the square root of the variance. 

 2
c B

c B
t t

σ = + 2  (28) 

The σα corresponding with αc defined in the experiment design is found by solving 

for a value of x  on the error function for the normal distribution such that  

 1
2

cxα
ασ σ −= = . (29) 
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The final confidence interval equals A . ασ±

Because this analysis method calculates an activity instead of a number, 

that activity is translated into a rough number using the following activity 

relation: 

 An
λ

= . (30) 

 The HPS standard is compared to the method presented in this thesis 

using the same data simulation code described above.  Given identical 

confidences, both methods should converge at a success rate of 1-αa at their point 

of maximum sensitivity.  Figure 15 demonstrates one such test where both 

methods are attempted from simulated data where the time of measurement is 

calculated for maximum sensitivity for the experiment design code.  The value of 

n is then increased until the amount of error reaches 1-αa.  The EDC reaches the 

desired quantification rate of 80% more than a full order of magnitude prior to 

the HPS method.  However, at values of n higher than 50, calculation times to 

simulate 10,000 random measurements, the time to calculate confidence intervals 

increase rapidly.  This introduces an interesting engineering problem about where 

the EDC method should hand off responsibility for analysis to the HPS method. 
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Figure 15 - Comparative convergence to 1-α for 2 methods 
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5. Use of the Experiment Design Code 

The experiment design scheme that optimizes sensitivity for a given 

measurement is not necessarily the best one to satisfy the purposes of the user.  

There are times when expediency may be more important than optimal 

sensitivity.  For instance, if the researcher is attempting to measure from a large 

number of samples to find one that has a species presence higher than a threshold 

value, then processing these samples quickly to maximize throughput and 

minimize delay time is more important than maximum sensitivity.  There may 

also be times where the physical demands of the detector or schedule constraints 

place an upper limit to the count duration.  The experiment design code allows 

users to determine the tradeoffs between the demands of the experiment and the 

amount of time that may be saved by sacrificing some on those requirements.  

Given a lower bound on the expected relative width and desired probability of 

acceptance, the code can output a minimum detectable quantity to describe a 

function of sensitivity under current conditions. 

5.1 Inherent Flexibility in Time 

When graphed against time, the minimum expected relative width for the 

LMQQ must fall below θ.  The probability of acceptance must also lie above the 

line defined by (1-αa).  While it may be desirable to maintain the optimal 
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counting time to maximize robustness, the measurement time can easily be 

decreased to the first of those limits without sacrificing any of the specified 

experimental limits.  There will be an increase in error, but not more than is 

acceptable.  This method can be used under any circumstance but is also the one 

least likely to generate a large reduction in measurement time. 

5.2 Flexibility in Sensitivity 

 Increasing the acceptable level of error by increasing any of the three 

measurements of acceptability will increase flexibility in time by lowering the 

ERW curves and raising the PoQ curves.  Additionally, the user may declare a 

minimum quantity of interest, resulting in a similar trend in ERW and PoQ 

curves. 
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Figure 16 - Effect of flexibility in αw on count time requirement. 

 

Figure 17 - Effect of flexibility in MQQ on time requirement. 
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Figure 18 - Flexibility in time for increasing values of n 

5.3 Precision in Knowledge of the Background 

Additional precision, and thus flexibility, can be gained through an 

increased certainty in the mean background count rate.  Assuming the 

background is constant, this can be accomplished by simply making a longer 

measurement prior to the actual experiment.  Keeping all other factors constant, 

a longer background measurement can lower error by as much as an order of 

magnitude.  Figure 19 shows the fraction of trials where n was quantified but fell 

outside the confidence interval.  Increased knowledge in the background decreases 

the probability of this kind of error. 
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Figure 19 - False Quantification vs. Background Sampling Time 

5.4 Minimum Quantifiable Quantity 

If the experimental setup and the counting times are fixed, the code may 

also be used to determine the MQQ.  This is also an effective method of 

adjusting a variable that might be constrained by reality to tune an experiment 

to an acceptable level of sensitivity.  The following graphs detail the importance 

of short delay times and optimal measurement times in a situation where the 

experimental procedure may be inflexible. 
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Figure 20 - MQQ vs. Delay Time 

 

Figure 21 - MQQ vs. Measurement Time 
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6. Conclusions and Recommendations 

Given the data from the simulation, it is clear that the experiment design 

method presented is capable of very sensitive quantification measurements and 

that its mathematical basis is sound.  This body of research will form the basis 

for future work that will make this method fully applicable.  Advancements 

should be made in several areas in order for the experiment optimization code to 

be fully applicable towards modern low count problems.  As of this writing, the 

tool is capable of optimizing measurement times for very small numbers of atoms, 

analyzing the data from such measurements, and calculating the nominal 

sensitivity of a given setup provided that conditions meet the assumptions listed 

in Section 1.6.  Removing these restrictions requires work in a handful of primary 

areas of research. 

6.1 Improvements in Confidence Interval Generation 

 The confidence interval generation method presented in this paper is 

limited in that it is prone to large jumps in error as the probability distribution 

function changes over integer values.  The generation of the relative expected 

width has decreased much of this problem in the initial calculation, but it does 

not eliminate the issue.  This analysis method may always be hampered by these 

discontinuities.  If this is true then the level of uncertainty generated by 
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confidence interval error needs to be characterized.  However, logic that produces 

confidence intervals with smooth error characteristics would be preferable. 

6.2 Background Characterization 

 The background count will never be a perfect Poisson distribution.  

Driving forces such as nearby sources and laboratory activities can never be 

perfectly shielded against.  The background will also never remain constant, if for 

no other reason than the fact that cosmic events are out of our control.  

Continued work should be done in characterizing the possible distributions of 

background counts and how those differences will affect the outcome of the 

calculations presented in this paper.  Furthermore, procedures that take into 

account the possibility of a fluctuating mean background count should be 

explored.  These procedures may include fluctuations based on activities that 

occur on a regional, daily, or even seasonal basis. 

6.3 Application of Real Time and Species Variables 

 The code currently calculates time in half-lives of a non-specific species.  

In order for this code to be more applicable to the laboratory, it should include a 

library of radioactive species and their half lives in order to translate these 

calculations into real measurement times. 
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6.4 Development of a Graphical User Interface 

 Running this code by means of namelist input and output files is slow and 

cumbersome.  A GUI designed specifically for the lab would be able to input data 

from the user quickly and with fewer errors than a text based file.  Furthermore, 

the output would be much more customizable with a graphic interface as opposed 

to the current text based version. 

6.5 Analysis Hand off to Gaussian and Zone of Poor Sensitivity 

Gaussian analysis assumptions are acceptable for situations where an order 

of magnitude greater sensitivity is unnecessary.  There comes a point where the 

sample size is great enough that the analysis should revert back to classical 

methods.  Additionaly, exact statistics calculations become very taxing on 

computer resources well prior to the point where the Gaussian method is 

accurate.  If the EDC is not sufficiently optimized, a zone of poor sensitivity will 

exist where the sample size is too high to efficiently calculate using exact 

methods, but too low for precision using Gaussian methods. 

6.6 Code Optimizations for High Values of n 

 The current code contains optimizations that account for some aspects of 

the calculation.  For instance, all necessary values of the binomial coefficient are 

initialized recursively at the beginning of the program.  Also, the probability of 
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decay detection and background counting for a given td and tc are calculated only 

once for a given time step.  However, run times are very lengthy for any 

calculation where the expected number of atoms is very high.  For instance, this 

can occur when counts are high, detector efficiency is low, the experimenter 

demands a particularly high degree of confidence, or the time of measurement is 

significantly less than the duration of the species’ half life.  At the least, this code 

could be rebuilt such that separate calculations could be run in parallel on 

multiple processors. 
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